skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harrison, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales. 
    more » « less
  2. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) is an observing project by the Undergraduate ALFALFA Team, aimed at determining the mass of the Pisces Perseus Supercluster through measurement of peculiar velocities from HI line detections. The survey targeted approximately 600 galaxies selected based on SDSS and GALEX photometry as likely to contain HI. We reduced Arecibo L-Band Wide observations for 90 galaxies near declination 25 degrees, 40 of which showed HI emission. 58% of those 40 galaxies were below 10,000 km/s recession velocity and thus will provide useful information to draw conclusions from. We determined the recession velocity, velocity width, and HI line flux for each detection. We discuss our results for APPSS galaxies and for ALFALFA detections near this declination strip. By combining results from all strips, APPSS will determine which galaxies are associated with the Pisces-Perseus Supercluster, and their peculiar velocities will be measured via the baryonic Tully-Fisher relation. This work has been supported by NSF grants AST-1211005 and AST-1637339. 
    more » « less